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Outline:
Key Elements to NEMO

•NEMO Goal:
•Quantitative design and synthesis of resonant tunneling diodes
(RTD’s).

•Faster simulation than experimental turn-around (1 week).
•Anticipated / Expected:

•Scattering - origin of the valley current.
•Charge self-consistency - position of voltage peak.

• Unexpected / Breakthroughs:
•Treatment of extended contact regions
•Full bandstructure - Empirical tight binding: sp3s*, sp3d5s*

•Non-parabolicity, complex band warping, indirect gaps
•Putting it all together

•NEMO - testmatrix
•The next step: automated analysis and SYNTHESIS
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Resonant Tunneling Diode

Conduction band diagrams
for different voltages

and the resulting current flow.
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NEMO:
A User-friendly Quantum Device Design Tool
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• NEMO 1-D was developed under a NSA/NRO contract to Texas Instruments and Raytheon from ‘93-
’98  (>50,000 person hours, 250,000 lines of code).

• NEMO 1-D maintained and NEMO 3-D developed at JPL ‘98-’02 (>12000 person hours) under NASA
funding.  Since ‘02 NSA and ONR funding.

• NEMO is THE state-of-the-art quantum device design tool.
• First target: transport through resonant tunneling diodes (high speed electronics).
• Second target: electronic structure in realistically large nano devices (detectors).
• Newly set target: qbit device simulation.

• Bridges the gap between device engineering and quantum physics.
• Based on Non-Equilibrium Green function formalism NEGF - Datta, Lake, and Klimeck.
• Used at Intel, Motorola, HP, Texas Instruments, and >10 Universities.
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Electron-Phonon Interactions
Coupled Resonators
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Interface Roughness Scattering
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Alloy (Disorder) Scattering

    Disorder in the
mirrors or the gain
medium will spread
out the resonator

spectrum
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Tow Temperature: Polar Optical Phonon and
Interface Roughness Scattering

scattering raises valley current
by several orders of magnitude
scattering raises valley current
by several orders of magnitude
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Charge Accumulation/Depletion

asymmetric device:
35/47/47 A [4]
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Symmetric RTD’s:
Charge Self-Consistency Still Important!

Thomas-Fermi
Hartree
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Outline:
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•Unexpected / Breakthroughs:
•Treatment of 
  extended contact regions
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Modeling of a Typical GaAs/Al0.4Ga0.6As RTD

Thomas-Fermi
Hartree

20 nm GaAs ND = 2 1018 cm-3

200 nm GaAs ND = 2 1015 cm-3

18 nm GaAs
5 nm Al0.4Ga0.6As
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18 nm GaAs
200 nm GaAs ND = 2 1015 cm-3

20 nm GaAs ND = 2 1018 cm-3
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Modeling of a Typical GaAs/Al0.4Ga0.6As RTD

Thomas-Fermi
Hartree

Density of StatesDensity of States

Carrier Injection from:
• Emitter bound states
• Continuum states.
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Generalized Boundary Conditions:
Boundaries as a Scattering Problem

• Left and right regions are treated as reservoirs.
• Quantum structure of reservoirs is included exactly.

E - H0 - S RB( )G< = S<BGA

E - H0 - S RB( )GR = 1

Dynamics

Kinetics
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Treatment of the Electron Reservoirs
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Typical Methods:
• Injection from reservoirs with flat bands

New Method:
•   Injection of carriers from reservoirs with bent bands
• Modified densities of states
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Modeling of a Typical GaAs/Al0.4Ga0.6As RTD

Thomas-Fermi
Hartree

Density of StatesDensity of States

Where does the valley current
current come from?
Self-consistency helps - not enough
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no POP
tridiag POP
full POP

Single band with scattering

POP = Polar Optical Phonons

Modeling of a Typical GaAs/Al0.4Ga0.6As RTD

Density of StatesDensity of States

Where does the valley current
current come from?
POP is the only efffective scattering
mechanism - not enough
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no POP
tridiag POP
full POP

Single band with scattering

POP = Polar Optical Phonons

Modeling of a Typical GaAs/Al0.4Ga0.6As RTD
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Outline:
Key Elements to NEMO

•Unexpected / Breakthroughs:
•Full bandstructure

Non-parabolicity
 band warping

indirect materials
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Single Band vs. Multiband

no POP
tridiag POP
full POP

Single band with scattering

POP = Polar Optical Phonons

Multiband without scattering
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Comparison of 1 and 10 Band
Densities of States

1 band density of states 10 band density of states10 band lowers 2nd resonance
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Current Flow through the
Second Resonance

1 band
10 bands

1 band electron density current density
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.

Wave Attenuation in Barriers

• Attenuation is smaller with coupled bands
• Tunneling probability increases
• Current increases
=> Barriers are more transparent than expected!!!

Ec

k=Im(k)
Re(k)

Ev

0.15 0.10 0.05 0 0.05 0.150.10

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Wave vector a
p2( )

En
er

gy
 (e

V)
1 Band Coupled Bands

AttenuationAttenuation PropagationPropagation

Ev

Ec

e-kL

L



Gerhard Klimeck Applied Cluster Computing Technologies Group

kx

ky
kz

AlAsGaAs

Momentum Space

kx

ky
kz

kx

ky
kz

GaAs

z-direction

Real Space
Ec (z)

G

E (z)X
c

GaAs AlAs GaAs

X-well
Resonances

Transport in Indirect Gap Barriers



Gerhard Klimeck Applied Cluster Computing Technologies Group

Multiband Effects in GaAs/AlAs RTD’s
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• G -> X tunneling in the collector
• quantized states in the ‘barriers’
• G and X resonances interact
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GaAs / AlAs RTD Simulation

    Agreement between simulation and
experiment has significantly improved
with the addition of band structure
effects.
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Genetically Engineered
Nanoelectronic Structures (GENES)

Objectives:
• Automate nanoelectronic device synthesis,

analysis, and optimization using genetic
algorithms (GA).

Approach:
• Augment parallel genetic algorithm

(PGApack).
• Combine PGApack with NEMO.
• Develop graphical user interface for GA.

How do you know what you have built?
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Key Elements to NEMO
Conclusions

•NEMO Goals Achieved:
•Quantitative design and synthesis of resonant tunneling
diodes (RTD’s).

•Faster simulation than experimental turn-around (1 week).
•Lessons Learned:

•Comprehensive theory approach really did work.
•Needed close coupling to well controlled test matrices.
•Contact treatment and full bandstructure approach
brought breakthrough.

•Scattering (in central RTD) was not the most important
(against all predictions).
Scattering in the contacts is the most important effect, but
we need to fake it through relaxation time approximation.

•Can perform automated device synthesis and analysis.
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Generation M

Basic Genetic Algorithm

• Genetic algorithm parameter optimization is based on:

• Survival of good parameter sets

• Evolution of new parameter sets

• Survival of a diverse population

• Optimization can be performed globally, rather than locally.
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Crossover explores different
combinations of existing
genes.

Crossover operation

Basic Evolution Operations

• Creation of new gene values.

Each set (Si) consists of several parameters (Pj)
The parameters Pj can be of different kinds: real, integers,
symbols, ….
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F(x, y) =
sin(x)
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Global Optimization via Genetic Algorithms
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 Genetic Algorithm Convergence
 pop = 100,  300 generations, steady-state (10%), 2-point crossover p = 0.85, mutatation p = 1/2

Global Optimization:
Genetic Algorithm Development
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